On trigonometric sums with random frequencies
نویسندگان
چکیده
منابع مشابه
On trigonometric sums with random frequencies
There is a wide and nearly complete theory of trigonometric series with random coefficients; on the other hand, much less is known on trigonometric series with random frequencies. In this paper we study the asymptotic behavior of SN = ∑N k=1 sinnkx for random sequences (nk)k≥1, independent and identically distributed over disjoint intervals Ik ⊂ (0,∞) of the same length. As it turns out, the be...
متن کاملOn Trigonometric Sums with Gaps
A well known theorem states as follows :' Let ni < n2 <. . ., nk+1 / nk > A > 1 be an infinite sequence of real numbers and S (ak + bk) a divergent series satisfying k=1 Then denotes the Lebesgue measure of the set in question. It seems likely that the Theorem remains true if it is not assumed that the n k are integers. On the other hand if nk ,f-n,.-1 is an arbitrary sequence of integers it is...
متن کاملOn Some Trigonometric Power Sums
In contrast to Fourier series, these finite power sums are over the angles equally dividing the upper-half plane. Moreover, these beautiful and somewhat surprising sums often arise in analysis. In this note, we extend the above results to the power sums as shown in identities (17), (19), (25), (26), (32), (33), (34), (35), and (36) and in the appendix. The method is based on the generating func...
متن کاملSome Notes on Trigonometric Sums
1 Trigonometric Sums 1 1.1 Gauss Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Kloosterman Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Geometrization 2 2.1 A Lemma on Torsors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Artin-Shreier Sheaves . . . . . . . . . . . . . . . . . ...
متن کاملBasic Trigonometric Power Sums with Applications
− 2 , where m is a positive integer and subject to m < n + 1 [28]. In this equation ⌊n/2⌋ denotes the floor function of n/2 or the greatest integer less than or equal to n/2. A solution to the above problem was presented shortly after by Greening et al. in [18]. Soon afterwards, there appeared a problem involving powers of the secant proposed by Gardner [15], which was solved partially by Fishe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Scientiarum Mathematicarum Hungarica
سال: 2018
ISSN: 0081-6906,1588-2896
DOI: 10.1556/012.2018.55.1.1389