On trigonometric sums with random frequencies

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On trigonometric sums with random frequencies

There is a wide and nearly complete theory of trigonometric series with random coefficients; on the other hand, much less is known on trigonometric series with random frequencies. In this paper we study the asymptotic behavior of SN = ∑N k=1 sinnkx for random sequences (nk)k≥1, independent and identically distributed over disjoint intervals Ik ⊂ (0,∞) of the same length. As it turns out, the be...

متن کامل

On Trigonometric Sums with Gaps

A well known theorem states as follows :' Let ni < n2 <. . ., nk+1 / nk > A > 1 be an infinite sequence of real numbers and S (ak + bk) a divergent series satisfying k=1 Then denotes the Lebesgue measure of the set in question. It seems likely that the Theorem remains true if it is not assumed that the n k are integers. On the other hand if nk ,f-n,.-1 is an arbitrary sequence of integers it is...

متن کامل

On Some Trigonometric Power Sums

In contrast to Fourier series, these finite power sums are over the angles equally dividing the upper-half plane. Moreover, these beautiful and somewhat surprising sums often arise in analysis. In this note, we extend the above results to the power sums as shown in identities (17), (19), (25), (26), (32), (33), (34), (35), and (36) and in the appendix. The method is based on the generating func...

متن کامل

Some Notes on Trigonometric Sums

1 Trigonometric Sums 1 1.1 Gauss Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Kloosterman Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Geometrization 2 2.1 A Lemma on Torsors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Artin-Shreier Sheaves . . . . . . . . . . . . . . . . . ...

متن کامل

Basic Trigonometric Power Sums with Applications

− 2 , where m is a positive integer and subject to m < n + 1 [28]. In this equation ⌊n/2⌋ denotes the floor function of n/2 or the greatest integer less than or equal to n/2. A solution to the above problem was presented shortly after by Greening et al. in [18]. Soon afterwards, there appeared a problem involving powers of the secant proposed by Gardner [15], which was solved partially by Fishe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Scientiarum Mathematicarum Hungarica

سال: 2018

ISSN: 0081-6906,1588-2896

DOI: 10.1556/012.2018.55.1.1389